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Knowledge Discovery and Data 
Mining

Unit # 5
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Accuracy or Error Rates

• Partition: Training-and-testing

– use two independent data sets, e.g., training set (2/3), 

test set(1/3)

– used for data set with large number of examples
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Metrics for Performance Evaluation

• Focus on the predictive capability of a model

– Rather than how fast it takes to classify or build 
models, scalability, etc.

• Confusion Matrix:

PREDICTED CLASS

ACTUAL

CLASS

Class=Yes Class=No

Class=Yes a b

Class=No c d

a: TP (true positive)

b: FN (false negative)

c: FP (false positive)

d: TN (true negative)
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Metrics for Performance Evaluation…

• Most widely-used metric:

PREDICTED CLASS

ACTUAL

CLASS

Class=Yes Class=No

Class=Yes a

(TP)

b

(FN)

Class=No c

(FP)

d

(TN)

FNFPTNTP

TNTP

dcba

da









Accuracy 
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Limitation of Accuracy

• Consider a 2-class problem

– Number of Class 0 examples = 9990

– Number of Class 1 examples = 10

• If model predicts everything to be class 0, 
accuracy is 9990/10000 = 99.9 %

– Accuracy is misleading because model does not 
detect any class 1 example
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Cost Matrix

PREDICTED CLASS

ACTUAL

CLASS

C(i|j) Class=Yes Class=No

Class=Yes C(Yes|Yes) C(No|Yes)

Class=No C(Yes|No) C(No|No)

C(i|j): Cost of misclassifying class j example as class i
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Cost Matrix (Cont’d)

Sajjad Haider

PREDICTED CLASS

ACTUAL

CLASS

True False

True 10 5

False 1 14

PREDICTED CLASS

ACTUAL

CLASS

True False

True 10 6

False 0 14

PREDICTED CLASS

ACTUAL

CLASS

True False

True 10 3

False 3 14

All three confusion matrices have 
the same accuracy value, i.e., 24 / 
30

What if the cost of misclassification 
is not the same for both type of 
errors?
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Cost Matrix (Cont’d)
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PREDICTED CLASS

ACTUAL

CLASS

True False

True 10 5x5

False 1 14

PREDICTED CLASS

ACTUAL

CLASS

True False

True 10 6x5

False 0 14

PREDICTED CLASS

ACTUAL

CLASS

True False

True 10 3x5

False 3 14

Suppose the cost of misclassifying 
True as False is 5 while the cost of 
misclassifying False as True is 1.

Accuracy values are:
24/50, 24/42, 24/54
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Cost Matrix (Cont’d)
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PREDICTED CLASS

ACTUAL

CLASS

True False

True 10 5x4

False 1 14

PREDICTED CLASS

ACTUAL

CLASS

True False

True 10 6x4

False 0 14

PREDICTED CLASS

ACTUAL

CLASS

True False

True 10 3x4

False 3 14

Suppose the cost of misclassifying 
True as False is 4 while the cost of 
misclassifying False as True is 1.

Accuracy values are:
24/45, 24/39, 24/48
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Cost-Sensitive Measures

cba

a

pr

rp

ba

a

ca

a













2

22
(F) measure-F

(r) Recall

 (p)Precision 

 Precision is biased towards C(Yes|Yes) & C(Yes|No)

 Recall is biased towards C(Yes|Yes) & C(No|Yes)

 F-measure is biased towards all except C(No|No)

dwcwbwaw

dwaw

4321

41Accuracy  Weighted




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Recall and Precision

Actual Prediction

T T

T F

F T

F F

F T

T T

T T

T F

F T

T T
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Recall and Precision

• Recall = 4 / 6Actual Prediction

T T

T F

F T

F F

F T

T T

T T

T F

F T

T T
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Recall and Precision

• Recall = 4 / 6

• Precision = 4 / 7

• F-Measure = 8 / 13

Actual Prediction

T T

T F

F T

F F

F T

T T

T T

T F

F T

T T
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Terminology

• True Positive: The number of positive examples 
correctly predicted by the classification model.

• False Negative: The number of positive examples 
wrongly predicted as negative by the 
classification model.

• False Positive: The number of negative examples 
wrongly predicted as positive by the classification 
model.

• True Negative: The number of negative examples 
correctly predicted by the classification model. 
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Terminology (Cont’d)

• The true positive rate (TPR) or sensitivity is 
defined as TPR = TP / (TP + FN).

• The true negative rate (TNR) or specificity is 
defined as TNR = TN / (TN + FP).

• The false positive rate (FPR) is defined as FPR 
= FP / (TN + FP).

• The false negative rate (FNR) is defined as FNR 
= FN / (TP + FN).
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ROC (Receiver Operating Characteristic)

• Developed in 1950s for signal detection 
theory to analyze noisy signals 
– Characterize the trade-off between positive hits 

and false alarms

• ROC curve plots TPR (on the y-axis) against 
FPR (on the x-axis)

• Remember that TPR represents “sensitivity” 
while FPR represents “100 – specificity”.
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How to Construct an ROC curve
Instance P(+|A) True Class

1 0.95 +

2 0.93 +

3 0.87 -

4 0.85 -

5 0.85 -

6 0.85 +

7 0.76 -

8 0.53 +

9 0.43 -

10 0.25 +

• Use classifier that produces 
posterior probability for each 
test instance P(+|A)

• Sort the instances according to 
P(+|A) in decreasing order

• Apply threshold at each 
unique value of P(+|A)

• Count the number of TP, FP, 
TN, FN at each threshold

• TP rate, TPR = TP/(TP+FN)

• FP rate, FPR = FP/(FP + TN)
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How to construct an ROC curve
Class + - + - - - + - + +  

P 
0.25 0.43 0.53 0.76 0.85 0.85 0.85 0.87 0.93 0.95 1.00 

TP 5 4 4 3 3 3 3 2 2 1 0 

FP 5 5 4 4 3 2 1 1 0 0 0 

TN 0 0 1 1 2 3 4 4 5 5 5 

FN 0 1 1 2 2 2 2 3 3 4 5 

TPR 1 0.8 0.8 0.6 0.6 0.6 0.6 0.4 0.4 0.2 0 

FPR 1 1 0.8 0.8 0.6 0.4 0.2 0.2 0 0 0 

 

Threshold 
>= 

ROC Curve:
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ROC Curve
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• It shows the tradeoff between 
sensitivity and specificity (any 
increase in sensitivity will be 
accompanied by a decrease in 
specificity).

• The closer the curve follows the 
left-hand border and then the top 
border of the ROC space, the more 
accurate the test.

• The closer the curve comes to the 
45-degree diagonal of the ROC 
space, the less accurate the test.

• The area under the curve is a 
measure of text accuracy.
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Lift and Gain Charts

• Very commonly used in the marketing research. 

• Lift is a measure of the effectiveness of a 
predictive model calculated as the ratio between 
the results obtained with and without the 
predictive model.

• A lift chart consists of a lift curve and a baseline

• The greater the area between the lift curve and 
the baseline, the better the model
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Example
http://www2.cs.uregina.ca/~dbd/cs831/notes/lift_chart/lift_chart.html

• Using the response model 
P(x)=100-AGE(x) for 
customer x and the data 
table, construct the 
cumulative gains and lift 
charts. Ties in ranking should 
be arbitrarily broken by 
assigning a higher rank to who 
appears first in the table.
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http://www2.cs.uregina.ca/~dbd/cs831/notes/lift_chart/lift_chart.html
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Example: Steps 1 & 2

1. Calculate P(x) for each 
person x

2. Order the people according to 
rank P(x)
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Example: Step 3

• Calculate the percentage of 
total responses for each cutoff 
point

– Response Rate = Number of 
Responses / Total Number of 
Responses (10)
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Example: Gains and Lift Charts

• To plot life chart, calculate the points on the lift curve 
by determining the ratio between the result predicted 
by our model and the result using no model.
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Practice Exercises

• Draw gains and lift charts of data set given on 
slide 18 .

• Draw ROC for data set given in slide 23.

• Apply supervised and unsupervised 
discretization techniques on “Attribute 2” of 
data set given on slide 35 of Unit # 3. 

• Form decision trees using Entropy, Gini and 
Gain_ratio as splitting criteria on the above 
data set (after discretization). 
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